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Summary

The order of sensitivity in the falling weight test is calculated as a function of bubble
size for a liguid explosive/bubble system. The results compare favorably with experiments,
and indicate that sensitivity in such cases is not some unique property of the liquid ex-
plosive itself, but rather is a property of the liquid/bubble system. Chemically caused
differences of sensitivity may be present, but are not easy to evaluate due to the poor
statistical significance of go/no go experiments, Some comments on this problem are
given, along with considerations of complicated initiations and the effects of hydrostatic
ambient pressure on initiation. The algorithm presented previously is a guide delineating
occwrences which are significant in initiation,

Introduction

The idea that initiation and the onset of the chemical reaction in gases is
governed by the volume homogeneous (shock-) heating process, fails in the
case of condensed explosives at low pressures, as Nernst [1] has already
pointed out, Therefore safety is not predictable in terms of thermal explosion
or reaction kinetics by itself, Convincing examples are the thermally stable
lead azide (stable up to 315°C), which nevertheless is easily initiated by a
weak impact, and a low velocity detonation (LVD) of liquid (and solid)
explosives initiated by impact pressures of between 1 and 2 kbar, In both
cases pressure heating occurs to the extent of a few degrees; it even is prac-
tically absent if an explosive increase of pressure of 5—10 bar initiates warm
(60°C) nitromethane (NM) [2].

In the following years the idea was born that statistically distributed dis-
sipative centers within the volume may be activated by an external stimulus,
finally leading to a quasi-volume homogeneous chemical reaction. Today this
concept is known in liquids as hot spot initiation, where the dissipative
centers are realized by dynamic activated bubbles or voids. It is noteworthy
that the pronounced effect of bubbles on sensitivity has been denied in the
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twenties [3], since it was thought, from Le Chatelier’s ideas, that overall
sensitivity is governed by thermochemistry, Present-day safety considerations
are based on more theoretical predictions and it is of importance to have a
physical model of initiation for guidance in practical situations which may
occur and be potentially dangerous.

The aim of this paper is to apply the previously published paper ‘“Approxi-
mative Quantitative Aspects of a Hot Spot” (J. Hazerdous Materials, 12
(1985) 43—64) to practical problems of safety. In the following the formulas,
tables and figures of this paper are identified by a prescript 1.

Formulation of the Roth—von Neumann suggestion

Roth [4], in the course of accident investigations, introduced the con-
cept of cavitation in liquids as a causative agent in some cases. From other
considerations, von Neumann [ 5] suggested that the

“detonation wave initiates the detonation in the neighboring layer of the intact explosive
by the discontinuity of material velocity which it produces. This acts like a very vehement
mechanical blow (~ 1500 m/s), and is probably more effective than high temperature.”

It is curious, that this idea, which is in opposition to the thermal- and
precursors-initiation view, was largely ignored in the following years, in spite
of the fact that Roth [6] had found, in the case of crystalline explosives,
that particle velocity is more decisive for initiation than any other parameter.

We will now combine the idea of Roth with that of von Neumann, and
assume simply that a cavity or bubble is pushed by a high speed blow. Impart-
ing to the bubble, originally at rest, a particle velocity u, we have from eqn.
(1-49) together with egns. (I-2), (I-5) and (I-6) for the dissipative power of
the bubble motion:

N(t) = =840t V37 PoPe V2 /4nR? 1)

Using eqn. (I-10) to connect the velocity of the bubble surface, R, with the
particle velocity, u,., of the surrounding medium we get, together with egn.
(1-9), an expression for the loss power in terms of the radius of the bubble,
R, the loss of bubble motion, &,,;, the appropriate polytropic index of the
bubble content, ', the medium density, p., and the surrounding pressure,
Po,

N(t) = — 47R? 840, V' 3Y Po P Ul (2)
In the generalized case, eqn, (I-50), the dissipative power is proportional

to 8V'2, Relating this dissipative power to the instantaneous volume of the

bubble, V, one gets

N/Ves | V2V (3)

IV'3/ V] is plotted in Fig. 1 as a function of the generalized time, r, and
various losses, 6. Figure 1 shows the idea of hot spots as poles of power
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Fig. 1. The demonstration of the Roth—von Neumann suggestion. A generalized unit
bubble of initial volume Vj; = 1 and loss 3 is pushed by a velocity blow corresponding to
Vo =— 1. As can be seen, for low losses poles of loss power exist per the instantaneous
volume V, which disappear for larger losses. As shown later, this is not a key for deter-

mining safety, since these poles depend on the stimulation Vj, and not on the loss &
alone,
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Fig. 2. Loss power, N, and volume-specific loss power, N/Vy, where the initial volume,

V,, has been used, for resonant bubbles of various losses in NG. These bubbles, originally
at rest, have been pushed by a discontinuous particle velocity blow of up, = 100 m/s.



314

loss in locus and time as the void collapses, Larger losses prevent collapse
under given conditions.

As an example, the order of magnitude of the dissipated power is shown
in Fig. 2 for a bubble of resonance frequency [ in nitroglycerine (NG)
pushed by a particle velocity u, = 100 m/s as a function of the loss. The
dissipated power decreases as the size of the bubble decreases, whereas the
power loss per initial volume of the bubble increases as bubble size decreases.
It seems quite likely that power losses of MW/cm?® force the onset of chemi-
cal reaction if it is at all possible. The radiation loss is phase locked to the
dissipative power loss; this is the physical reason why pressure and reaction
waves are usually coupled. If reaction is marginal, a decoupling of pressure
and reaction wave may occur, which is not foreseen in the classical approach
to detonation. In classical detonics, see Becker {7], the existence of coupling
between pressure and reaction was considered to be the key problem of
detonation, but no explanation has ever been given.

Comparison with experiments

According to the foregoing, sensitivity does not seem to be a unique
function of the chemical properties of the liquid explosive; Figure (I-7)
suggests that sensitivity should be governed by bubble size.

Roth [8] carried out experiments using the falling weight test to investi-
gate the effect of the size of an air bubble on sensitivity., He sealed an air
bubble in a bag containing nitroglycerine (NG), and this assembly was

TABLE 1

Comparison of the experimental and theoretical sensitivity hierarchy of a liquid explosive/
bubble system for NG and GDN [8]

Radius, R, of Experimental energy of Experimental Calculated
air bubble (cm) fall, E* (mkp/cm?)
NG Eo o5 /E (N/Ng o5 )
- >26.5 —
0.06 1.86 1 1
0.1 0.8 2.33 271
0.2—0.25 0.3 6.2
0.2b6 10.25
0.25—0.5 0.25 7.44
g5 28.7
>0.5 < 0.06 >31.2
GDN Eo.15/E (N/Ng.s)
0.15 >1.86 ~1 1
0.25 1.1 >17 2.2
>0.5 0.2 ~9%.3 8.2

*For 1 explosion in 6 trials (1 mkp = 9.81 J3.
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TABLE 2

Experimental order of sensitivity of a liquid explosive with one 1 cm diameter air bubble:
Calcutations to determine possible chemically caused differences of sensitivity

Energy of fall Loss powet N/Nyxg
E® {mkp/cm?) NxR?34.,Vp-E
(107°)
NG 0.06 265 1
DEGN 0.14 522 2
GDN 0.2 781 3
NM >1.86 >5882 >22

“Roth [8].

completely immersed in another liquid. In these circumstances we may apply
our algorithm to this type of experiment. As a measure of sensitivity Roth
used one explosion in six trials. For this limit he has given a specific energy
of impact (mkp/ecm? ), Since he performed these experiments with a constant
drop weight, the corresponding u;w in the liquid is proportional to the specific
energy of impact. He determined the specific energy of impact as a function
of bubble size for NG and glycoldinitrate (GDN), as shown in Table 1.
Furthermore he determined the sensitivity of different liquid explosives
containing an air bubble of about 1 cm diameter, as shown in Table 2.

If we assume that the same power loss in the same liquid produces the
same chemical effects, then the order of sensitivity should be governed by
eqn. (2); the order is given from the experiments in terms of E/E and this
ratio should correspond to the ratio (84;R? )/(S4issR? )rer- These values are
compared in Table 1, where the dissipative losses have been calculated ac-
cording to the Nishi algorithm by using the values given in Tables I-1 and I-2.
Within the expected accuracy, the appropriate order of sensitivity has been
calculated for NG and GDN.

Chemically caused differences of sensitivity

Chemically caused differences in sensitivity can be found by comparing
the power losses for a contant size air bubble in different liquid explosives.
Using eqn. (2) we consider the expression 8 4, R*v/pee. Eey- Table 2 indicates
that the dissipative loss power in DEGN is approximately twice that in NG.
Therefore an order of chemical sensitivity NG/DEGN/GDN/NM =~ 1/2/3/> 22
is most likely, At first glance this result is not completely consistent with the
findings of Bowden and Yoffe [9]. These authors report that the sensitivity
of various substances in the liquid or plastic state are roughly the same if
tested by a cavity striker falling 10 ¢cm, where the radius of the cavity is
R =5 x107% cm. In this assembly the first explosion of NG was observed at
a height of fall of 0.5 cm, and 100% efficiency was obtained for 10 cm.



316

Calculating for R = 5x 1072 cm the values of Sgu/Pw, these values
indeed do not differ widely. At the upper extreme we calculate 0.256 for
NG, 0.152 for liquid TNT, ranging down to 0.095 for NM; a factor of 3.

It therefore depends on experimental conditions whether chemically caused
differences are evident or not. The physical reason for this is that the power
loss per unit volume is increased,

Statistical significance of go/no go-tests

In a falling weight test an explosion (go) occurs, or does not occur (no go},
and the reliability of such a procedure is not at all comparable with the
required reliability.

Suppose that the probability of an explosion in a single experiment
amounts to p, then the probability of failure is ¢ = 1 — p. The probability,
P, of exactly ¢ explosions occusring in N trials is given by,

N!
dN—en?
where 0! is defined to be 1,

Several measures of sensitivity are possible, depending on sensifivity
requirements:
(a) One may take as an indication of “‘safety” 0 explosions in N trials, so

one gets with a single-event probability p

P, = ‘L—p)e (4)

Py = A—pY (5)
(b) Another possibility is, as Roth did, to take 1 explosion in IV trials as a

measure

Py = Np(1—p)¥1) (6)

(c) Or, one asks for a 50% value, so that exactly ¢ = N/2 explosions in ¥
trials are obtained

N

Pyva = (N/Z

) PN (1 —pyV2 (7)

(d) Also one may say, that in N trials at least ¢ = 1 or more explosions occur,
and the probability to get this amounts to

N
Ppy = L P =1=P =1-(1-p)" (8)
2 o
(e) An explosives manufacurer requires N explosions in N trials, and this

probability is:
Py = p¥ )
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In Fig. 3 the probabilities of getting these desired events are plotted for
the single-event probability, p, for the case of N = 6 trials. By comparing
these cases it is seen that Roth’s indications, one explosion in 6 trials, are
more decisive for the single-event probability.
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Fig. 3. If the single-event probability is p, then P, gives the probability of getting exactly
e = 0 events in N = 6 trials (0/6), P, exactly 1/6, P, exactly 3/6, P, exactly 6/6, and
P at least 1 or more events in 6 trials. In go/no go-tests the single-event probability p
can only be evaluated by sets of experiments.

The single-event probability, p, can be evaluated only by a number, N, of
experiments. One may be interested in the maximum value, Py , fOT 2 given
confidence P, = 1 — « in the case ¢ = 0. According to egn. (5} for 0<p=<
Prmax > (1 — Pmax ) = o holds. This means that with a confidence of P, = 0.95
in N =50 no go tests throughout (¢ = 0), ppe = 1 —exp (In 0.05/50) =
0.058, and for P, = 99%, Prsx = 0.088 is even obtained.

To insure with a probability P, that the single event probability is below a
maximum value p,..,

log Py

log (1 — Pr )
no go tests throughout are necessary. To settle pp = 1077 with a confi-
dence of 1 —P, = 0,95, N =3 x 107 of the said tests are necessary. Evidently
it is impossible to settle safety limits by go/no go tests in practical situations.

One may ask further how many experiments must be performed to obtain
at least one event or more, if the single-event probability amounts to p.
According to eqn. (8) we may undertake
log (1 — P)

N=Int————+1 11
log (1 —p) (11)

experiments, for getting at least one go with a probability P. It is therefore

N = Int. +1 (10)
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possible to perform many trials, in spite of a relatively poor safety, until the
first event, i.e. an accident occurs. It is even possible to have a fabrication
process with an inherently unsafe system (lets say explosion probability
p = 107%), with only after some thousands of operations the real character
of the system coming out (in this example N = 2995 operations are necessary
to get at least one or more events with the probability of P = 0.95).

For the assessment of safety, further information is helpful, such as
empirical knowledge, feeling, practice, or at best a real theoretical insight.
Such an insight is the most powerful tool, since the former items of infor-
mation are lacking in the case of new ventures.

There are two limiting cases of possible strategies for assessment of safety:
® Experience without any theory, only possible for old-fashioned systems to

settle a statistical a posteriori safety.
® Relevant physical modeling, and discovery of an applicable ““true” theory.

This is the only option to settle a predictive a priori safety for new systems.

In practical situations, of course, these cases are mixed. The theoretical
basis for linking a priori events and probabilities (from experience of the
past, or from theory) with an actual test result is Bayes’ theorem. It is crucial
that in the case of explosives numerical a priori probabilities are not available.
The monograph [11] nevertheless gives an approximate way for incorporat-
ing Bayes’ theorem. In an actual test we get ¢ events in N trials, so the event
probability orders to

p=c/N (12)

Now we perform N’ additional, related experiments (not necessarily the
same ones) until we get exactly the next event. The safety characterizing
probability amounts to

b c+1
N+ N’

(13)

and as N' increases, p' decreases. This additional experiment may be a real
experiment, knowledge, theory, or even feeling., In the latter case a good
knowledge, or an assumed good knowledge, is characterized by the size of
N’

Factors of safe handling

As demonstrated, V? and V'?, or better |V*/V| and |V'}/V], are the
decisive terms for safe handling or initiation, respectively. The absolute value
indicates that a bubble expands following its collapse, From Fig. 1 one may
speculate that there exists an optimum loss for preventing bubble collapse.
This, however, is not the case, since in addition the external stimulation is a
decisive term. This will be shown here for the case that a pressure step start-
ing at 7 = 0 with infinite duration stimulates the bubble system.
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If a unit pressure step, p, corresponding to V. = —1, see eqns. (I-42) to
(I-46), activates a bubble system of different losses, 6, the situation depicted
at the top of Fig. 4 results, In this case bubble collapse is prevented for the
system of loss § = 20. As a 10-fold unit pressure step is applied (V.. = — 10),
this effect disappears as shown at the bottom of Fig. 4. Apparently condi-
tions of safe handling always depend both on stimulation and loss, and
there exists no general rule to establish safety under each circumstance.

Vap= <1

Vo=-10

Fig. 4. Stimulation of a bubble system of different losses by an external unit pressure step
corresponding to V.. =— 1, and the 10-fold unit pressure step V., = — 10 of infinite dur-

ation. If the initiation is powerful, systems of high loss also collapse, and the influences of
the initial conditions progressively vanish.

For a given stimulation, however, safety is increased by increased loss 6.
According to {I} loss is favorably increased by the viscosily of the matrix,
N. This indication is also realized by the historical steps undertaken to
increase the safe handling of NG. The more viscous explosive, like blasting
gelatine, is less sensitive and horny ballistite as 8 NG-propellant may be used
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for stable burning in ammunition systems, whereas nevertheless it is exploded
by suitable impact.

Pressure effects on safe handling

Let a stimulating pressure step, p,
t<0 —p{)=0
t>0 —plty=—p

corresponding to
0 forr<Q
V-=)_2_ Vopr forr> 0 (14)
K Y Po

act on the vibratory bubble system, see eqns. (1-42) to (I-46). p, is the initial
ambient pressure of the system. If this ambient pressure, p,, is increased, say
by a factor of 10, then the stimulation caused by the dynamic pressure, p,
accordingly decreases by this factor of 10. This case is also illustrated in Fig.
4, where in this example V.. = — 10 corresponds to the initial case, and that
of V., =—1 to the case of the 10-fold increase in ambient pressure. Very
approximately the V'-spectrum decreases by this factor, depending on the
loss.

The pressure dependence of sensitivity, and the limits of safe handling as a
function of stimulation and external pressure arises because the transition
functions V/V.. and V'/V. both depend on V., see eqns. (I-42) to (I-46).
Pressurized systems are therefore less sensitive to the onset of chemical
reaction, but more sensitive to pressure build-up due to increased radiation
loss. Depressurization should increase the sensitivity to explosion.

Pressure effects on open- and closed-pore systems

Considering in the vibratory system the quantities of mass m (eqn. I-2),
and stiffness K (eqn. 1-4), significant differences of pressure effects in open-
and closed-pore systems are to be expected: In the case of a closed-pore
system the initial volume V; of the bubble at pressure p, will be compressed
to the volume V, by the ambient static pressure p,, whereas in the open-
pore system this latter pressure p, pressurizes the original volume V.

In the open-pore system, only values of K, b, and § depend on the pressure

= 7Vil versus K = 'y__m‘;:o (15)

The resonance frequency, which is connected with the time of bubble
collapse, changes according to+/p if isothermal compression occurs. Further
values of b and § vary according to the conditions.

K,
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In closed-pore systems all coefficients are affected by pressure. Again
assuming isothermal compression with p; = 1 one obtains:

m; = pa ¥ Pi/4ATR, (16)
K, = v'pi/Vo (17)

1 3" e
w, = =— [= 18
1 R, P P (18)

Therefore resonance conditions vary as (p, /po)!"? in the case of open-pore,
and as (pi/po)°* in the case of closed-pore systems. Accordingly the loss, §,
is affected in different ways, see {I}.

The role of the pressurizing gas

It has long been puzzling why a difference is sometimes observed between
air and nitrogen pressurization; a difference which cannot be explained in
terms of the pressure dependence of the polytropic index, v'. Actually, the
pressure dependence of this polytropic index is a difficult problem to deal
with {12], see Appendix.

However, there are some recent results on the role of a gas dissolved in a
liquid. Usually the viscosity of any liquid, with the exception of water below
30°C, increases with pressure. This increase of viscosity with pressure depends
on the molecular structure of the liquid, and varies between moderate and
large. Kuss [13] has shown that there are some gases, if dissolved in the
liquid, that do not markedly affect the pressure dependence of viscosity.
There are also cases where dissolved gases in a liquid reduce its viscosity by
several orders of magnitude. It has also been found that viscosity reduces to
a minimum value and then increases again as pressure increases, (Gases of a
more complex molecular structure are more effective than simple gases.

Dissolved gases also change the density and compressibility of liquids. This
is why it is difficult to predict the effects that a particular type of pressur-
izing gas will have.

Experimental facts on the pressure dependence of initiation

In spite of the fact that detonation pressures are in the region of hundreds
of kbar, onset of initiation is very strongly affected by the ambient static
pressure, Even static pressures as low as a few bars may prevent initiation.

For example, the falling weight tests of Bowden and Yoffe [9] in the case
of NG show a 100% efficiency at ambient pressure, whereas this efficiency
drops to zero at 20 to 30 bar ambient pressure. Gurton [14] has observed
that by an increase of the static pressure to 68 bar, the frequency of onset
of high velocity detonation (HVD) is reduced for NG as well as for crystal-
line powdered explosives. Even LVD initiation is progressively impeded if
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the ambient pressurizing gas is methane. This is demonstrated by the reduc-
tion of the detonation velocity from 7690m/s (1 bar, air) to 6670 m/s
(14.3 bar, methane) down to 909 m/s (67.7 bar, methane) in the same
assembly using the same initiation method.

In the case of tetryl (0.9 g/cm?®), flaked TNT (0.8 g/cm?), and nitro-
guanidine (0.5 g/cm?®), the normal LVD velocities were exhibited at ambient
pressures of air, ether, or pentane. In the case of pressurization by methane,
LVD was prevented at 48 bar in tetryl, 41 bar in flaked TNT and 18 bar in
nitroguanidine, whereas up to a pressure of 68 bar HVD was not influenced
by the pressure. According to Eitz [15, 16] permitted explosives exhibit a
strong influence of pressure on detonation: a closed-pore gelatinous per-
mitted explosive (German class 1) failed to detonate completely at 10 bar
ambient pressure of methane, whereas an open-pore salt explosive of the
same class detonated completely at 40 bar ambient methane pressure, and
pressurization by nitrogen is more critical than pressurization by air or
methane, There is also a strong influence from the ambient temperature, so
for a German class III permitted explosive at 40°C full detonation occurs,
whereas only 5% detonates at 0°C at 60 bar ambient methane pressure.

Chick [17] reports that the gap values to initiate a HVD are also reduced
by ambient gas pressure for PETN and HMX. Gases of a complicated mol-
ecular structure seem to be more effective in preventing detonation than
simple gases (like in the drop weight test, see Ref. [9]), but no differences
between air and nitrogen have been found. Additionally the grain sizes are
important. The transition to detonation is prolonged, but the HVD velocity
i$ not influenced. Marshall [18] confirms this for HMX, exeept that up to 70
bar nitrogen or methane pressure no influence on detonation build-up was
found. He concludes that the pressure-dependent initiation mechanism is
different from the pressure-independent mechanism of HVD growth. This
reflects long experience that the onset of detonation occurs via the route:
any stimulation - LVD — HVD. Therefore it is quite possible, that the pres-
sure dependence of the LVD initiation is reflected in HVD studies. As one
example, according to Brochet [19] onset of HVD for isopropylnitrate
(IPN) depends on temperature, pressure and as such LVD specific con-
finement, HVD can be obtained at

20mm i.¢ at T> 310 K and p < 150 bar
28 mm i.¢ at 7> 300 K and p < 110—120 bar
T > 313—315 K and p < 230 bar

This pressure dependence of HVD initiation may be seen as a result of the
pressure dependence of LVD initiation. Groothuizen, Pasman and Schil-
peroord [ 20] have observed a LVD for IPN.

In summary, as predicted, open-pore systems are less pressure sensitive
than closed-pore systems, although experimental results are scarce and
conflicting. It appears that HVD effects are governed by the prevailing
pressure effects of LVD, if initiation occurs by a relatively weak stimulus via
LVD - HVD,



323

*SANP00 UOIJBIHUI USY] pue washs ay; pessed sey asind Burjeinuins ayj axagam ‘(op1s Jydll pue 3301 dog) padestaus
aq 0} ¥ UOjJEIIMl [ENpIsal B JO Annqissod oy ], 'SWa1SAS $50] MO] JO SOIUBUAD 3} UO UOIRJIDIXA JO UCHEINp ayj Jo sswenpu] ‘G 3

1onpIsay 101410

Jonpisay I

oL

P b gl - — -

- U




324

Complicated initiation modes

If a crude model of initiation is available, it is possible to speculate on
complicated initiation modes.

In the preceeding, the influence of a very short (r = 0), and a long excit-
ation (7 — o) has been considered. Here we consider possible influences
of the duration of excitation, denoted 7. In Fig. 5 the oscillator response in
| V| and |V'| is considered for a low loss system (5 = 0) for a stimulation
shorter, equal to, and longer than the period of the oscillatory system. As
may be seen, a chance exists that owing to larger V' values an initiation may
occur in the residuum. This means initiation takes place as the exciting pulse
has passed the system. It seems that sometimes such observations have been
made. For systems of larger loss, such a chance is absent, see Fig. 6.
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Fig. 6. Dynamic behavior of a higher loss vibratory system. Initial initiation only is
possible,
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Let us now consider the influence of the amplitude of excitation. From
the theory of Fourier integrals, the low-frequency approximation of the
frequency spectrum of a short exciting pressure pulse corresponds to fp dt
for each shape, provided the duration of the exciting pulse is short com-
pared with the period of the vibratory system. It is easy to verify this by
integration of eqn. (I-1) or eqgn. (I-40). This means that under given con-
ditions it is not the amplitude but the value of [p dt that decides whether
initiation takes place or not. It seems, in the case of crystalline explosives,
that for very short pulses such behavior is present, but it is not clear that this
is the case for liquid explosives,

Conclusions

A combination of old suggestions has been used to derive a rationale for
the order of sensitivity of initiation, and for pressure effects on it. It appears
that sensitivity depends more on bubble size and other circumstances than
on the chemical properties of the liquid explosive by itself. In order to test
this rationale a speculative extrapolation is made to more complicated ini-
tiation modes, which might he examined by experiment.
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Appendix

Pressure dependence of the specific heat
There are different pressure dependences of the specific heats at constant
volume Cy or constant pressure C,

Ay,  _ _ 3V

(F;)T - T(aT2 )p (A.1)
acy|  _ (3cy) [av\ _ ,(¥p) (a¥

(ap)T (av)T (ap)T - T(aTz)v (aP):r (A.2)

where p, T and V are the pressure, absolute temperature and volume, respec-
tively. Accordingly, the specific heat ratio, v = C,/Cy, is a function of
pressure.

For static pressures of the order below 50 bar, one may use Berthelot’s
equation of state. Ribaud [12] obtained

Cp weay = Cp deany T AC, {A.3)
Cygeay = Cvigeay T AC,/3 (A.4)
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where

3
ac, = 50% (2) cal/mol K (A.5)
P\ T
is expressed in terms of the critical pressure, p,, and temperature, T.
For practical purposes one uses the expression

3
AC, = (AC, 3% P (2?) (A6)
and values of (AC, )31k are given in Table Al.

From these values a pressure dependence of the specific heat ratio v may
be calculated. For Ar at 273 K and 50 bar ambient pressure we have y =
1.445/0,620 = 2.33, which may be the reason for the exaggerated high
luminosity of discharges in pressurized Ar.



